c++ 11 之后有了标准的线程库:std::thread。
之前一些编译器使用 C++11 的编译参数是 -std=c++11
g++ -std=c++11 test.cpp
std::thread 构造函数
默认构造函数 | thread() noexcept; |
---|---|
初始化构造函数 | template <class Fn, class... Args> explicit thread(Fn&& fn, Args&&... args); |
拷贝构造函数 [deleted] | thread(const thread&) = delete; |
Move 构造函数 | thread(thread&& x) noexcept; |
- 默认构造函数,创建一个空的
std::thread
执行对象。 - 初始化构造函数,创建一个
std::thread
对象,该std::thread
对象可被joinable
,新产生的线程会调用fn
函数,该函数的参数由args
给出。 - 拷贝构造函数(被禁用),意味着
std::thread
对象不可拷贝构造。 - Move 构造函数,move 构造函数(move 语义是 C++11 新出现的概念,详见附录),调用成功之后
x
不代表任何std::thread
执行对象。
注意:可被
joinable
的std::thread
对象必须在他们销毁之前被主线程join
或者将其设置为detached
.
std::thread 各种构造函数例子如下:
实例
#include <iostream>
#include <utility>
#include <thread>
#include <chrono>
#include <functional>
#include <atomic>
void f1(int n)
{
for (int i = 0; i < 5; ++i) {
std::cout << "Thread " << n << " executing\n";
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
void f2(int& n)
{
for (int i = 0; i < 5; ++i) {
std::cout << "Thread 2 executing\n";
++n;
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
int main()
{
int n = 0;
std::thread t1; // t1 is not a thread
std::thread t2(f1, n + 1); // pass by value
std::thread t3(f2, std::ref(n)); // pass by reference
std::thread t4(std::move(t3)); // t4 is now running f2(). t3 is no longer a thread
t2.join();
t4.join();
std::cout << "Final value of n is " << n << '\n';
}
std::thread 赋值操作
Move 赋值操作 | thread& operator=(thread&& rhs) noexcept; |
---|---|
拷贝赋值操作 [deleted] | thread& operator=(const thread&) = delete; |
- Move 赋值操作(1),如果当前对象不可
joinable
,需要传递一个右值引用(rhs
)给move
赋值操作;如果当前对象可被joinable
,则会调用terminate
() 报错。 - 拷贝赋值操作(2),被禁用,因此
std::thread
对象不可拷贝赋值。
请看下面的例子:
实例
#include <stdio.h>
#include <stdlib.h>
#include <chrono> // std::chrono::seconds
#include <iostream> // std::cout
#include <thread> // std::thread, std::this_thread::sleep_for
void thread_task(int n) {
std::this_thread::sleep_for(std::chrono::seconds(n));
std::cout << "hello thread "
<< std::this_thread::get_id()
<< " paused " << n << " seconds" << std::endl;
}
int main(int argc, const char *argv[])
{
std::thread threads[5];
std::cout << "Spawning 5 threads...\n";
for (int i = 0; i < 5; i++) {
threads[i] = std::thread(thread_task, i + 1);
}
std::cout << "Done spawning threads! Now wait for them to join\n";
for (auto& t: threads) {
t.join();
}
std::cout << "All threads joined.\n";
return EXIT_SUCCESS;
}
其他成员函数
get_id: 获取线程 ID,返回一个类型为 std::thread::id 的对象。请看下面例子:
实例
#include <iostream>
#include <thread>
#include <chrono>
void foo()
{
std::this_thread::sleep_for(std::chrono::seconds(1));
}
int main()
{
std::thread t1(foo);
std::thread::id t1_id = t1.get_id();
std::thread t2(foo);
std::thread::id t2_id = t2.get_id();
std::cout << "t1's id: " << t1_id << '\n';
std::cout << "t2's id: " << t2_id << '\n';
t1.join();
t2.join();
}
joinable: 检查线程是否可被 join。检查当前的线程对象是否表示了一个活动的执行线程,由默认构造函数创建的线程是不能被 join 的。另外,如果某个线程 已经执行完任务,但是没有被 join 的话,该线程依然会被认为是一个活动的执行线程,因此也是可以被 join 的。
实例
#include <iostream>
#include <thread>
#include <chrono>
void foo()
{
std::this_thread::sleep_for(std::chrono::seconds(1));
}
int main()
{
std::thread t;
std::cout << "before starting, joinable: " << t.joinable() << '\n';
t = std::thread(foo);
std::cout << "after starting, joinable: " << t.joinable() << '\n';
t.join();
}
join: Join 线程,调用该函数会阻塞当前线程,直到由 *this 所标示的线程执行完毕 join 才返回。
#include <iostream>
#include <thread>
#include <chrono>
void foo()
{
// simulate expensive operation
std::this_thread::sleep_for(std::chrono::seconds(1));
}
void bar()
{
// simulate expensive operation
std::this_thread::sleep_for(std::chrono::seconds(1));
}
int main()
{
std::cout << "starting first helper...\n";
std::thread helper1(foo);
std::cout << "starting second helper...\n";
std::thread helper2(bar);
std::cout << "waiting for helpers to finish..." << std::endl;
helper1.join();
helper2.join();
std::cout << "done!\n";
}
detach: Detach 线程。 将当前线程对象所代表的执行实例与该线程对象分离,使得线程的执行可以单独进行。一旦线程执行完毕,它所分配的资源将会被释放。
调用 detach 函数之后:
*this
不再代表任何的线程执行实例。- joinable() == false
- get_id() == std::thread::id()
另外,如果出错或者 joinable() == false,则会抛出 std::system_error。
实例
#include <iostream>
#include <chrono>
#include <thread>
void independentThread()
{
std::cout << "Starting concurrent thread.\n";
std::this_thread::sleep_for(std::chrono::seconds(2));
std::cout << "Exiting concurrent thread.\n";
}
void threadCaller()
{
std::cout << "Starting thread caller.\n";
std::thread t(independentThread);
t.detach();
std::this_thread::sleep_for(std::chrono::seconds(1));
std::cout << "Exiting thread caller.\n";
}
int main()
{
threadCaller();
std::this_thread::sleep_for(std::chrono::seconds(5));
}
swap: Swap 线程,交换两个线程对象所代表的底层句柄(underlying handles)。
实例
#include <iostream>
#include <thread>
#include <chrono>
void foo()
{
std::this_thread::sleep_for(std::chrono::seconds(1));
}
void bar()
{
std::this_thread::sleep_for(std::chrono::seconds(1));
}
int main()
{
std::thread t1(foo);
std::thread t2(bar);
std::cout << "thread 1 id: " << t1.get_id() << std::endl;
std::cout << "thread 2 id: " << t2.get_id() << std::endl;
std::swap(t1, t2);
std::cout << "after std::swap(t1, t2):" << std::endl;
std::cout << "thread 1 id: " << t1.get_id() << std::endl;
std::cout << "thread 2 id: " << t2.get_id() << std::endl;
t1.swap(t2);
std::cout << "after t1.swap(t2):" << std::endl;
std::cout << "thread 1 id: " << t1.get_id() << std::endl;
std::cout << "thread 2 id: " << t2.get_id() << std::endl;
t1.join();
t2.join();
}
执行结果如下:
thread 1 id: 1892 thread 2 id: 2584 after std::swap(t1, t2): thread 1 id: 2584 thread 2 id: 1892 after t1.swap(t2): thread 1 id: 1892 thread 2 id: 2584
native_handle: 返回 native handle(由于 std::thread 的实现和操作系统相关,因此该函数返回与 std::thread 具体实现相关的线程句柄,例如在符合 Posix 标准的平台下(如 Unix/Linux)是 Pthread 库)。
实例
#include <thread>
#include <iostream>
#include <chrono>
#include <cstring>
#include <pthread.h>
std::mutex iomutex;
void f(int num)
{
std::this_thread::sleep_for(std::chrono::seconds(1));
sched_param sch;
int policy;
pthread_getschedparam(pthread_self(), &policy, &sch);
std::lock_guard<std::mutex> lk(iomutex);
std::cout << "Thread " << num << " is executing at priority "
<< sch.sched_priority << '\n';
}
int main()
{
std::thread t1(f, 1), t2(f, 2);
sched_param sch;
int policy;
pthread_getschedparam(t1.native_handle(), &policy, &sch);
sch.sched_priority = 20;
if(pthread_setschedparam(t1.native_handle(), SCHED_FIFO, &sch)) {
std::cout << "Failed to setschedparam: " << std::strerror(errno) << '\n';
}
t1.join();
t2.join();
}
执行结果如下:
Thread 2 is executing at priority 0 Thread 1 is executing at priority 20
hardware_concurrency [static]: 检测硬件并发特性,返回当前平台的线程实现所支持的线程并发数目,但返回值仅仅只作为系统提示(hint)。
实例
#include <iostream>
#include <thread>
int main() {
unsigned int n = std::thread::hardware_concurrency();
std::cout << n << " concurrent threads are supported.\n";
}
std::this_thread 命名空间中相关辅助函数介绍
get_id: 获取线程 ID。
实例
#include <iostream>
#include <thread>
#include <chrono>
#include <mutex>
std::mutex g_display_mutex;
void foo()
{
std::thread::id this_id = std::this_thread::get_id();
g_display_mutex.lock();
std::cout << "thread " << this_id << " sleeping...\n";
g_display_mutex.unlock();
std::this_thread::sleep_for(std::chrono::seconds(1));
}
int main()
{
std::thread t1(foo);
std::thread t2(foo);
t1.join();
t2.join();
}
yield: 当前线程放弃执行,操作系统调度另一线程继续执行。
实例
#include <iostream>
#include <chrono>
#include <thread>
// "busy sleep" while suggesting that other threads run
// for a small amount of time
void little_sleep(std::chrono::microseconds us)
{
auto start = std::chrono::high_resolution_clock::now();
auto end = start + us;
do {
std::this_thread::yield();
} while (std::chrono::high_resolution_clock::now() < end);
}
int main()
{
auto start = std::chrono::high_resolution_clock::now();
little_sleep(std::chrono::microseconds(100));
auto elapsed = std::chrono::high_resolution_clock::now() - start;
std::cout << "waited for "
<< std::chrono::duration_cast<std::chrono::microseconds>(elapsed).count()
<< " microseconds\n";
}
sleep_until: 线程休眠至某个指定的时刻(time point),该线程才被重新唤醒。
template< class Clock, class Duration >
void sleep_until( const std::chrono::time_point<Clock,Duration>& sleep_time );
sleep_for: 线程休眠某个指定的时间片(time span),该线程才被重新唤醒,不过由于线程调度等原因,实际休眠时间可能比 sleep_duration 所表示的时间片更长。
实例
#include <iostream>
#include <chrono>
#include <thread>
int main()
{
std::cout << "Hello waiter" << std::endl;
std::chrono::milliseconds dura( 2000 );
std::this_thread::sleep_for( dura );
std::cout << "Waited 2000 ms\n";
}
执行结果如下:
Hello waiter Waited 2000 ms
来源:https://github.com/forhappy/Cplusplus-Concurrency-In-Practice/blob/master/zh/chapter3-Thread/Introduction-to-Thread.md