SciPy 的 optimize 模块提供了常用的最优化算法函数实现,我们可以直接调用这些函数完成我们的优化问题,比如查找函数的最小值或方程的根等。
NumPy 能够找到多项式和线性方程的根,但它无法找到非线性方程的根,如下所示:
x + cos(x)
因此我们可以使用 SciPy 的 optimze.root 函数,这个函数需要两个参数:
- fun - 表示方程的函数。
- x0 - 根的初始猜测。
该函数返回一个对象,其中包含有关解决方案的信息。
实际解决方案在返回对象的属性 x ,查看如下实例:
实例
from scipy.optimize import root
from math import cos
# 查找 x + cos(x) 方程的根:
def eqn(x):
return x + cos(x)
myroot = root(eqn, 0)
print(myroot.x)
# 查看更多信息
#print(myroot)
执行以上代码,输出结果如下:
-0.73908513]
看更多信息:
实例
from scipy.optimize import root
from math import cos
def eqn(x):
return x + cos(x)
myroot = root(eqn, 0)
print(myroot)
执行以上代码,输出结果如下:
fjac: array([[-1.]])
fun: array([0.])
message: 'The solution converged.'
nfev: 9
qtf: array([-2.66786593e-13])
r: array([-1.67361202])
status: 1
success: True
x: array([-0.73908513])
最小化函数
函数表示一条曲线,曲线有高点和低点。
高点称为最大值。
低点称为最小值。
整条曲线中的最高点称为全局最大值,其余部分称为局部最大值。
整条曲线的最低点称为全局最小值,其余的称为局部最小值。
可以使用 scipy.optimize.minimize() 函数来最小化函数。
minimize() 函接受以下几个参数:
- fun - 要优化的函数
- x0 - 初始猜测值
- method - 要使用的方法名称,值可以是:'CG','BFGS','Newton-CG','L-BFGS-B','TNC','COBYLA',,'SLSQP'。
- callback - 每次优化迭代后调用的函数。
- options - 定义其他参数的字典:{ "disp": boolean - print detailed description "gtol": number - the tolerance of the error }
x^2 + x + 2 使用 BFGS 的最小化函数:
实例
from scipy.optimize import minimize
def eqn(x):
return x**2 + x + 2
mymin = minimize(eqn, 0, method='BFGS')
print(mymin)
执行以上代码,输出结果如下:
fun: 1.75 hess_inv: array([[0.50000001]]) jac: array([0.]) message: 'Optimization terminated successfully.' nfev: 8 nit: 2 njev: 4 status: 0 success: True x: array([-0.50000001])